Hendrerit enim egestas hac eu aliquam mauris at viverra id mi eget faucibus sagittis, volutpat placerat viverra ut metus velit, velegestas pretium sollicitudin rhoncus ullamcorper ullamcorper venenatis sed vestibulum eu quam pellentesque aliquet tellus integer curabitur pharetra integer et ipsum nunc et facilisis etiam vulputate blandit ultrices est lectus eget urna, non sed lacus tortor etamet sed sagittis id porttitor parturient posuere.
Sollicitudin rhoncus ullamcorper ullamcorper venenatis sed vestibulum eu quam pellentesque aliquet tellus integer curabitur pharetra integer et ipsum nunc et facilisis etiam vulputate blandit ultrices est lectus vulputate eget urna, non sed lacus tortor etamet sed sagittis id porttitor parturient posuere.
Eget lorem dolor sed viverra ipsum nunc aliquet bibendum felis donec et odio pellentesque diam volutpat commodo sed egestas aliquam sem fringilla ut morbi tincidunt augue interdum velit euismod eu tincidunt tortor aliquam nulla facilisi aenean sed adipiscing diam donec adipiscing ut lectus arcu bibendum at varius vel pharetra nibh venenatis cras sed felis eget.
“Eget lorem dolor sed viverra ipsum nunc aliquet bibendum felis donec et odio pellentesque diam volutpat.”
Nisi quis eleifend quam adipiscing vitae aliquet bibendum enim facilisis gravida neque velit euismod in pellentesque massa placerat volutpat lacus laoreet non curabitur gravida odio aenean sed adipiscing diam donec adipiscing tristique risus amet est placerat in egestas erat imperdiet sed euismod nisi.
Eget lorem dolor sed viverra ipsum nunc aliquet bibendum felis donec et odio pellentesque diam volutpat commodo sed egestas aliquam sem fringilla ut morbi tincidunt augue interdum velit euismod eu tincidunt tortor aliquam nulla facilisi aenean sed adipiscing diam donec adipiscing ut lectus arcu bibendum at varius vel pharetra nibh venenatis cras sed felis eget.
At Forwrd, we've developed a bit of a tradition: placing friendly bets with new customers on how messy their data will be. Spoiler alert? They almost always underestimate it.
Just last week, we found over 60,000 variations of 'Contact Title' in one customer’s Salesforce CRM. This week, another customer had 5,592 different values for the field "Number of Employees" — a field that, realistically, should have fewer than ten useful segments.
Fortunately, our Segmentation Agent was built for exactly this. In seconds, it reduced those thousands of noisy, inconsistent values into just 8 clean, model-ready buckets.
Messy data isn’t just a nuisance. When your data fields contain thousands of inconsistent values, your predictive models struggle to find reliable patterns. Instead of detecting meaningful signals, they get lost in the noise. And that means:
In contrast, clean, segmented inputs enable faster, sharper, more reliable predictions. This is especially true in GTM and RevOps use cases where precision and clarity drive real decisions.
Segmentation isn’t just about clustering or reducing. It’s about creating intelligent groupings that preserve meaning while removing chaos.
Take "Number of Employees" for example. Thousands of variations might include ranges ("10-50", "50 to 100"), typos ("1000 employees" vs "1,000" vs "One Thousand"), or open-text estimates ("About 500").
Our Segmentation Agent:
And the result? Clean data that's ready for modeling and meaningful enough to drive real business action.
When your inputs are chaotic, even the best model won’t help. But when your features are clear and structured:
Our Segmentation Agent is just one of the ways Forwrd helps data and business teams collaborate to turn raw data into decision-ready models.